Math Ncert Exemplar 2019 Solutions for Class 9 Maths Chapter 2 Polynomials are provided here with simple step-by-step explanations. These solutions for Polynomials are extremely popular among class 9 students for Maths Polynomials Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Math Ncert Exemplar 2019 Book of class 9 Maths Chapter 2 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Math Ncert Exemplar 2019 Solutions. All Math Ncert Exemplar 2019 Solutions for class 9 Maths are prepared by experts and are 100% accurate.

Page No 14:

Question 1:

Write the correct answer in each of the following :
Which one of the following is a polynomial?
(A) x22-2x2

(B) 2x-1

(C) x2+3x32x

(D) x-1x+1

Answer:

For an expression to be a polynomial, any variable in the expression must have the power of a whole number such as x2, y100,etc.
a variable term with negative power or fractional power such as 1x2, x-3 , etc. are not a polynomial.
Option A, is not a polynomial because of -2x2.
Option B, is not a polynomial because of 2x=2x12
Option C, x2+3x32x 
=x2+3x32x12=x2+3x32-12=x2+3x1
Hence it is a polynomial.
In option D, x-1x+1
=x-1+1-1x+1=x+1x+1-2x+1
=1-2x+1
Hence, it is not a polynomial.

We can conclude that option C is correct.

Page No 14:

Question 2:

Write the correct answer in each of the following :
2 is a polynomial of degree
(A) 2
(B) 0
(C) 1
(D) 12

Answer:

2 is a constant polynomial.
It can be represented as 2x0.
Thus, the degree of the non-zero constant polynomial is 0.

Hence, the correct answer is option B.

Page No 14:

Question 3:

Write the correct answer in each of the following :
Degree of the polynomial 4x4 + 0x3 + 0x5 + 5x + 7 is
(A) 4
(B) 5
(C) 3
(D) 7

Answer:

Given: 4x4 + 0x3 + 0x5 + 5x + 7.
The highest power of the variable in a polynomial is called degree of the polynomial.

Thus, the term with the highest power of x is 4x4. So, the degree of polynomial is 4.
Hence, the correct answer is option A.

Page No 14:

Question 4:

Write the correct answer in each of the following :
Degree of the zero polynomial is
(A) 0
(B) 1
(C) Any natural number
(D) Not defined

Answer:

Degree of the zero polynomial (0) is not defined.
Hence, the correct answer is option D.

Page No 14:

Question 5:

Write the correct answer in each of the following :
If px=x2-22x+1, then p22 is equal to
(A) 0
(B) 1
(C) 42
(D) 82+1

Answer:

Given: p(x)=x2-22x+1
p22=222-2222+1=8-8+1=1

Hence, the correct answer is option B.

Page No 14:

Question 6:

Write the correct answer in each of the following :
The value of the polynomial 5x – 4x2 + 3, when x = –1 is
(A) – 6
(B) 6
(C) 2
(D) –2

Answer:

Given: p(x) = 5– 4x+ 3
p(–1) – 5(–1) – 4(–1)2 + 3
= –5 – 4 + 3
= – 6
So, value of polynomial at x = –1 is –6.
Hence, the correct answer is option A.



Page No 15:

Question 7:

Write the correct answer in each of the following :
If p(x) = x + 3, then p(x) + p(–x) is equal to
(A) 3
(B) 2x
(C) 0
(D) 6

Answer:

Given: p(x) = + 3
∴ p(–x) = –x + 3
Now,
p(x) + p(–x) = (x + 3) + (–x + 3)
= 6
Hence, the correct answer is option D.

Page No 15:

Question 8:

Write the correct answer in each of the following :
Zero of the zero polynomial is
(A) 0
(B) 1
(C) Any real number
(D) Not defined

Answer:

Zero of a polynomial is the value of a variable for which polynomial becomes zero.
In zero polynomial, all coefficients are equal to zero.
Therefore, zero of a zero polynomial is not defined.

Hence, the correct answer is option D.

Page No 15:

Question 9:

Write the correct answer in each of the following :
Zero of the polynomial p(x) = 2x + 5 is
(A) -25

(B) -52

(C) 25

(D) 52

Answer:

Given: p(x) = 2+ 5
For zero of polynomial, p(x) = 0
 2x+5=0x=-52.
Hence, zero of polynomial p(x) is -52.
Hence, the correct answer is option B.

Page No 15:

Question 10:

Write the correct answer in each of the following :
One of the zeroes of the polynomial 2x2 + 7x – 4 is
(A) 2

(B) 12

(C) -12

(D) –2

Answer:

Given: p(x) = 2x+ 7– 4
For zero of polynomial, p(x) = 0
2x2+7x-4=02x2+8x-x-4=02x(x+4)-1(x+4)=0(2x-1) (x+4)=02x-1=0 or x+4=0x=-4, 12
Hence, the correct answer is option B.

Page No 15:

Question 11:

Write the correct answer in each of the following :
If x51 + 51 is divided by x + 1, the remainder is
(A) 0
(B) 1
(C) 49
(D) 50

Answer:

Let p(x) = x51 + 51
By Remainder Theorem, we have
Remainder = p(–1), since divisor is (x + 1)
p(–1) = (1)51 + 51

​= –1 + 51

= 50 

Hence, the correct answer is option D.

 

Page No 15:

Question 12:

Write the correct answer in each of the following :
If x + 1 is a factor of the polynomial 2x2 + kx, then the value of k is
(A) –3
(B) 4
(C) 2
(D) –2

Answer:

Let p(x) = 2xkx
By Remainder Theorem
Remainder = p(–1) = 0    ((x + 1) is a factor of p(x))
∴ p(–1) = 2(–1)2 + k(–1) = 0
⇒ 2 – k = 0
k = 2
Hence, the correct answer is option C.

Page No 15:

Question 13:

Write the correct answer in each of the following :
x + 1 is a factor of the polynomial
(A) x3 + x2 x + 1
(B) x3 + x2 + x + 1
(C) x4 + x3 + x2 + 1
(D) x4 + 3x3 + 3x2 + x + 1

Answer:

Apply Remainder Theorem.
+ 1 = 0
x = –1
Putting the value of x = –1 in all equations
(A) xx– + 1
= (–1)3 + (–1)2 – (–1) + 1
= –1 + 1 + 1 + 1
= 2
Therefore, (x + 1) is not a factor of equation.

(B) xx+ 1
= (–1)3 + (–1)2 + (–1) + 1
= –1 + 1 – 1 + 1
= 0
Therefore, (x + 1) is a factor of equation.

(C) xxx+ 1
= (–1)4 + (–1)3 + (–1)2 + 1
= 1 – 1 + 1 + 1
= 2
Therefore, (x + 1) is not a factor of equation.

(D) x+ 3x+ 3x+ 1
= (–1)4 + 3(–1)3 + 3(–1)2 + (–1) + 1
= 1 – 3 + 3 – 1 +  1
Therefore, (x + 1) is not a factor of equation.

Hence, the correct answer is option B.

Page No 15:

Question 14:

Write the correct answer in each of the following :
One of the factors of (25x2 – 1) + (1 + 5x)2 is
(A) 5 + x
(B) 5 – x
(C) 5x – 1
(D) 10x

Answer:

Let Q(x) = (25x– 1) + (1 + 5x)2
= (25x– 1) + (25x2 + 10x + 1)
= 50x2 + 10x
= 10x (5x + 1)
Thus, factors of Q(x) are 10x and (5x + 1).

Hence, the correct answer is option D.

Page No 15:

Question 15:

Write the correct answer in each of the following :
The value of 2492 – 2482 is
(A) 12
(B) 477
(C) 487
(D) 497

Answer:

Given: (249)– (248)2
we know,
a2b2 = (a – b) (a + b)
∴ (249)– (248)2
= (249 – 248)(249 + 248)
= (1)(497)
= 497

Hence, the correct answer is option D.

Page No 15:

Question 16:

Write the correct answer in each of the following :
The factorisation of 4x2 + 8x + 3 is
(A) (x + 1) (x + 3)
(B) (2x + 1) (2x + 3)
(C) (2x + 2) (2x + 5)
(D) (2x – 1) (2x – 3)

Answer:

Let p(x) = 4x+ 8+ 3
= 4x+ 6x + 2+ 3
= 2x(2x + 3) + 1(2x + 3)
= (2x + 1) (2x + 3)
Hence, the correct answer is option B.

Page No 15:

Question 17:

Write the correct answer in each of the following :
Which of the following is a factor of (x + y)3 – (x3 + y3)?
(A) x2 + y2 + 2xy
(B) x2 + y2 xy
(C) xy2
(D) 3xy

Answer:

(y)– (xy3)
= x3 + y3 + 3xy (x + y) – x3  – y3
= 3xy (x + y)
Thus, factors are 3xy and (x + y).

Hence, the correct answer is option D.

Page No 15:

Question 18:

Write the correct answer in each of the following :
The coefficient of x in the expansion of (x + 3)3 is
(A) 1
(B) 9
(C) 18
(D) 27

Answer:

We know,
(+ y)= x3 + y3 + 3x2y + 3xy2

∴ (+ 3)x3 + 27 + 9x2 + 27x
So, coefficient of x is 27.

Hence, the correct answer is option D.

Page No 15:

Question 19:

Write the correct answer in each of the following :
If xy+yx=-1 x, y 0, the value of x3 y3 is
(A) 1
(B) –1
(C) 0
(D) 12

Answer:

Given: xy+yx=-1 x, y 0
⇒ xy2 = –xy
⇒ xy2 + xy = 0      ...(1)
Now,
 x– y3 = (x – y) (x2 + y2 + xy)
= (x – y) (0)        (from (1))
= 0
Hence, the correct answer is option C.



Page No 16:

Question 20:

Write the correct answer in each of the following :
If 49x2-b=7x+12 7x-12, then the value of b is
(A) 0

(B) 12

(C) 14

(D) 12

Answer:

From RHS, we have
49x2-b=7x+12 7x-12=49x2-14        a2-b2=(a-b)(a+b)
Now, in LHS, we have
⇒ 49x2b
Comparing LHS with RHS, we get
b=14

Hence, the correct answer is option C.
 

Page No 16:

Question 21:

Write the correct answer in each of the following :
If a + b + c = 0, then a3 + b3 + c3 is equal to
(A) 0
(B) abc
(C) 3abc
(D) 2abc

Answer:

Given: = 0
we know,
abc3 – 3abc = () (a2 b2 c2 ab – bc – ca)
∴ abc3 – 3abc = 0
⇒ abc3 = 3abc
Hence, the correct answer is option C.
 

Page No 16:

Question 1:

Which of the following expressions are polynomials? Justify your answer:
(i) 8

(ii) 3x2-2x

(iii) 1-5x

(iv) 15x-2+5x+7

(v) x-2x-4x

(vi) 1x+1

(vii) 17a3-23a2+4a-7

(viii) 12x

Answer:

(i) Polynomial, because the exponent of the variable of 8 or 8x0 is 0, which is a whole number.
(ii) Polynomial, because the exponent of  variable 3x2-2x is a whole number.
(iii) Not polynomial, because the exponent of the variable of 1-5x is 12, whole number.
(iv) Polynomial, because the exponent of the variable 15x-2+5x+7=15x2+5x+7 is a whole number.
(v) Not polynomial, because the exponent of x-2x-4x=x2-6x+8x=x-6+8x-1 is –1, which is not a whole number.
(vi) Not polynomial, 1x+1 is a rational expression fx=qxrx is a rational expression, rx0, qx and rx are polynomial
(vii) Polynomial. because exponent of  17a3-23a2+4a-7 is whole number.
(viii) Not polynomial, because exponent of  12x=12x-1 is –1, which is not a whole number.



Page No 17:

Question 2:

Write whether the following statements are True or False. Justify your answer.
(i) A binomial can have at most two terms
(ii) Every polynomial is a binomial
(iii) A binomial may have degree 5
(iv) Zero of a polynomial is always 0
(v) A polynomial cannot have more than one zero
(vi) The degree of the sum of two polynomials each of degree 5 is always 5.

Answer:

(i) False, because a binomial has exactly two terms.
(ii) False, because every polynomial is not binomial 
e.g., 5x is a polynomial but not binomial.
(iii) True, because a binomial is a polynomial whose degree is a whole number greater than or equal to one.
(iv) False, because zero of polynomial can be any real number.
e.g., Q(x) = x – 6, then 6 is zero of polynomial Q(x).
(v) False, because a polynomial can have any number of zeros, it depends upon degree of polynomial.
(vi) False, because the sum of any two polynomial of same degree is not always the same.
e.g.,  f(x) = x5 + 3x2 ; g(x) = –x5 + 2
f(x) + g(x) = (x5 + 3x2) + (–x5 + 2)
= 3x2 + 2
Which is not a polynomial of degree 5.

 



Page No 18:

Question 1:

Classify the following polynomials as polynomials in one variable, two variables etc.
(i) x2 + x + 1
(ii) y3 – 5y
(iii) xy + yz + zx
(iv) x2 – 2xy + y2 + 1

Answer:

(i) x+ 1, Polynomial in one variable i.e. x.
(ii) y– 5y, Polynomial in one variable because it contains only one variable i.e., y.
(iii) xy yz zx , polynomial in three variable, i.e., x, y and z.
(iv)  x– 2xy y+ 1, polynomial in two variable, i.e., x and y.



Page No 19:

Question 2:

Determine the degree of each of the following polynomials :
(i) 2x – 1
(ii) –10
(iii) x3 – 9x + 3x5
(iv) y3(1 – y4)

Answer:

(i) 2– 1, degree is 1, because the maximum exponent of x is 1.
(ii) –10, degree is 0, because the exponent of x is 0.
(iii) x– 9+ 3x5, degree is 5, because the maximum exponent of x is 5.
(iv) y3(1 – y4) = y3 – y7, degree is 7, because the maximum exponent of y is 7. 

Page No 19:

Question 3:

For the polynomial x3+2x+15-72x2-x6, write
(i) the degree of the polynomial
(ii) the coefficient of x3
(iii) the coefficient of x6
(iv) the constant term

Answer:

Given: x3+2x+15-72x2-x6
=x35+2x5 +15-72x2-x6
(i) Degree of polynomial is the highest degree of its terms.
Here, degree of x35+2x5 +15-72x2-x6  is 6.
(ii) Coefficient of x3 is 15.
(iii) Coefficient of x6 is –1.
(iv) The constant term in polynomial is 15.

Page No 19:

Question 4:

Write the coefficient of x2 in each of the following :
(i) π6x+x2-1
(ii) 3x – 5
(iii) (x –1) (3x – 4)
(iv) (2x – 5) (2x2 – 3x + 1)

Answer:

(i) Coefficient of x2 in π6x+x2-1 is 1.
(ii) Coefficient of  x2 in 3– 5 is 0.
(iii)  (x – 1) (3x – 4) = 3x2 – 7x + 4
 Coefficient of x2 in 3x2 – 7x + 4 is 3.
(iv) (2– 5) (2x– 3+ 1) = 4x3 – 6x2 + 2x – 10x2 + 15x – 5
= 4x3 – 16x2 + 17x – 5
Coefficient of x2 in 4x3 – 16x2 + 17x – 5 is –16.

Page No 19:

Question 5:

Classify the following as a constant, linear, quadratic and cubic polynomials :
(i) 2 – x2 + x3
(ii) 3x3
(iii) 5t-7
(iv) 4 – 5y2
(v) 3
(vi) 2 + x
(vii) y3 y
(viii) 1 + x + x2
(ix) t2
(x) 2x-1

Answer:

(i) 2 – xx3 is a cubic polynomial.
(ii) 3x3 is a cubic polynomial because its highest degree is 3.
(iii) 5t-7 is a linear polynomial.
(iv) 4 – 5y2 is a quadratic polynomial.
(v) 3 is a constant polynomial.
(vi) 2 + is a linear polynomial.
(vii) y– y is a cubic polynomial.
(viii) 1 + x2 is a quadratic polynomial.
(ix) t2 is a quadratic polynomial.
(x) 2x-1 is a linear polynomial.

 

Page No 19:

Question 6:

Give an example of a polynomial, which is :
(i) monomial of degree 1
(ii) binomial of degree 20
(iii) tri-nomial of degree 2

Answer:

(i) Monomial of degree 1  :  5x
(ii) Binomial of degree 20  :  6y20 + 5
(iii) Tri-nomial of degree 2  :  x2 + x + 1

Page No 19:

Question 7:

Find the value of the polynomial 3x3 – 4x2 + 7x – 5, when x = 3 and also when x = –3.

Answer:

Given: p(x) = 3x– 4x+ 7– 5
∴ p(x) = 3(3)3 – 4(3)2 + 7(3) – 5
           = 81 – 36 + 21 – 5

   = 61

Also,
p(x) = 3(–3)3 – 4(–3)2 + 7(–3) – 5
       = –81 – 36 – 21 – 5
​       = –143
Hence, value of polynomial x = 3 is 61 and at x = –3 is –143.

Page No 19:

Question 8:

If p(x) = x2 – 4x + 3, evaluate : p(2) – p(–1) + p12

Answer:

Given: p(x) = x– 4+ 3
Now, p(2) = (2)2 – 4(2) + 3

= 4 – 8 + 3
= –1
p(–1) = (–1)2 – 4(–1) + 3
= 1 + 4 + 3
= 8
p12 = 122-412+3
​​=54
 
  ​p(2) – p(–1) + p12 = –1 – 8 + 54
​=-314
Hence, required value of â€‹p(2) – p(–1) + p12 is -314.

Page No 19:

Question 9:

Find p(0), p(1), p(–2) for the following polynomials :
(i) p(x) = 10x – 4x2 – 3
(ii) p(y) = (y + 2) (y – 2)

Answer:

(i)  Given p(x) = 10– 4x– 3
Now, 
p(0) = 10(0) – 4(0)– 3

 –3
p(1) = 10(1) – 4(1)– 3
= 3
p(–2) = 10(–2) – 4(–2)– 3
= –20 – 16 – 3
= –39
 
(ii) Given: p(y) = (+ 2) (– 2)
Now, 
       p(0) = (0 + 2) (0 – 2)
     = –4
       p(1) = (1 + 2) (1 – 2)
               = –​3
​       p(– 2) = (–2 + 2) (–2 – 2)
​​        = 0

Page No 19:

Question 10:

Verify whether the following are True or False :
(i) –3 is a zero of x – 3
(ii) -13 is a zero of 3x + 1
(iii) -45 is a zero of 4 – 5y
(iv) 0 and 2 are the zeroes of t2 – 2t
(v) –3 is a zero of y2 + y – 6

Answer:

(i) False, because 
– 3 = 0
x = 3
Thus, zero of x – 3 is 3 not –3.
(ii) True, because
3x + 1 =0
x-13
Thus, -13 is zero of 3x + 1.
(iii) False, because
4 – 5y = 0
y = 45
Thus, 45 is zero of 4 – 5y.
(iv) True, because
t– 2t = 0
t(– 2) = 0
t = 0, 2
Thus, 0 and 2 are zeros of t2 – 2t.
(v) True, because
y2 + y – 6 = 0
y2 + 3y – 2y – 6 = 0
⇒ (y + 3)(– 2) = 0
y = –3, 2
Thus, –3 is a zero of y2 + – 6.



Page No 20:

Question 11:

Find the zeroes of the polynomial in each of the following :
(i) p(x) = x – 4
(ii) g(x) = 3 – 6x
(iii) q(x) = 2x – 7
(iv) h(y) = 2y

Answer:

Given: (i) p(x) = – 4
For zero of polynomial, p(x) = 0
x – 4 = 0
⇒ x = 4
Hence, zero of polynomial, p(x) is 4.
(ii) Given: g(x) = 3 – 6x
For zero of polynomial, g(x) = 0
⇒ 3 – 6x = 0
x12
Hence, zero of polynomial, g(x) is 12.
(iii) Given: q(x) = 2– 7
For zero of polynomial, q(x) = 0
⇒ 2– 7 = 0
⇒ x = 72.
Hence, zero of polynomial q(x) is 72.
(iv) Given: h(y) = 2y
For zero of polynomial, h(y) = 0
⇒ 2y = 0
y = 0
Hence, zero of polynomial h(y) is 0.

Page No 20:

Question 12:

Find the zeroes of the polynomial :
p(x) = (x – 2)2 – (x + 2)2

Answer:

Given: p(x) = (– 2)– (+ 2)2
For zero of polynomial,
p(x) = 0
⇒ (– 2)– (+ 2)2 = 0
⇒ (x2 – 4x + 4) – (x2 + 4x + 4) = 0
⇒ –8x = 0
x = 0
Hence, zero of polynomial p(x) is 0.

Page No 20:

Question 13:

By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial : x4 + 1; x –1

Answer:

From Long Division Method, we have


Hence, Quotient : x3 + x2 + x + 1 and Remainder : 2

Page No 20:

Question 14:

By Remainder Theorem find the remainder, when p(x) is divided by g(x), where
(i) p(x) = x3 – 2x2 – 4x – 1, g(x) = x + 1
(ii) p(x) = x3 – 3x2 + 4x + 50, g(x) = x – 3
(iii) p(x) = 4x3 – 12x2 + 14x – 3, g(x) = 2x – 1
(iv) p(x) = x3 – 6x2 + 2x – 4, g(x) = 1 – 32x

Answer:


(i) Given: p(x) = x– 2x– 4– 1, g(x) = + 1
Now, g(x), we get
x + 1 = 0
x = –1
By remainder theorem, when p(x) divided by g(x), remainder is p(–1).
p(–1) = (–1)3 – 2(–1)2 – 4(–1) – 1
= –1 – 2 + 4 – 1
= 0
Hence, value of remainder is 0.

(ii) Given: p(x) = x– 3x+ 4+ 50, g(x) = – 3 
Now, p(x) = 0, we get
x – 3 = 0
x = 3
By remainder theorem, when p(x) is divided by g(x), remainder is p(3).
p(3) = (3)– 3(3)+ 4(3) + 50
= 27 – 27 + 12 + 50
= 62
Hence, value of remainder is 62.
(iii)  Given:  p(x) = 4x– 12x+ 14– 3, g(x) = 2– 1
Now, g(x) = 0 we get
2– 1 = 0
x12
By Remainder Theorem, when p(x) is divided by g(x) remainder is p12.
 p12=4123-12122+1412-3=12-3+7-3=32
Hence, value of remainder is 32.
(iv) Given: p(x) = x– 6x+ 2– 4, g(x) = 1-32x
Now, g(x) = 0, we get
1-3x2=0x=23 
By remainder theorem, when p(x) is divided by g(x) remainder is p23.
 p23=233-6232+223-4=827-649+53-4=-13627
Hence, value of remainder is -13627.

Page No 20:

Question 15:

Check whether p(x) is a multiple of g(x) or not :
(i) p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
(ii) p(x) = 2x3 – 11x2 – 4x + 5, g(x) = 2x + 1

Answer:

(i) Given: p(x) = x– 5x+ 4– 3, g(x) = – 2
zero of polynomial g(x)
⇒ g(x) = 0
⇒ – 2 = 0
⇒ – 2
For p(x) to be a multiple of g(x), remainder must be equal to zero 
​From remainder theorem, we have
Remainder = p(2) = (2)3 – 5(2)2 + 4(2) – 3
= 8 – 20 + 8 – 3
= –7
Remainder ≠ 0
Here, p(x) is not a multiple of g(x).
(ii) Given: p(x) = 2x– 11x– 4+ 5, g(x) = 2+ 1
zero of polynomial g(x),
⇒ g(x) = 0
⇒ 2+ 1 = 0
x-12
For p(x) to be a multiple of g(x), remainder must be equal to zero.
From remainder theorem, we have
Remainder = p-12=2-123-11-122-4-12+5

=-14-114+7=4
Remainder ≠ 0
Hence, p(x) is not a multiple of g(x).

Page No 20:

Question 16:

Show that :
(i) x + 3 is a factor of 69 + 11x x2 + x3.
(ii) 2x – 3 is a factor of x + 2x3 – 9x2 + 12.

Answer:

(i) Let p(x) = 69 + 11– xx3 and g(x) = x + 3
Now, g(x) = 0
x + 3 = 0
⇒ x = –3
Now, for g(x) to be a factor of p(x).
p(–3) = 0
p(–3) = 69 + 11(–3) – (–3)2 + (–3)3
= 69 – 33 – 9 – 27
= 0
Hence, (x + 3) is a factor of 69 + 11x – x2 + x3.

(ii) Let p(x) = + 2x– 9x+ 12 and g(x) = 2– 3
Now, g(x) = 0
⇒ 2– 3 = 0
⇒ x32
Now, for g(x) to be a factor of g(x).
p32=0
 p32=32+2323-9322+12=32+274-814+12=32-272+12=-12+12=0
Hence, (2– 3) is a factor of x + 2x3 – 9x2 + 12.

Page No 20:

Question 17:

Determine which of the following polynomials has x – 2 a factor :
(i) 3x2 + 6x – 24
(ii) 4x2 + x – 2

Answer:

(i) Let p(x) = 3x+ 6– 24 and g(x) = x – 2
Now, g(x) = 0
x – 2 = 0
 x = 0
For g(x) to be a factor of p(x).
p(2) = 0
p(2) = 3(2)2 + 6(2) – 24
= 12 + 12 – 24
= 0
Hence, (– 2) is a factor of 3x2 + 6x – 24.

(ii) Let p(x) =  4x– 2 and g(x) = x – 2
Now, g(x) = 0
 x – 2 = 0
 x = 2
For g(x) to be a factor of p(x).
p(2) = 0
∴ p(2) = 4(2)2 + 2 – 2
= 16
Hence, (– 2) is not a factor of 4x2 + x – 2.

Page No 20:

Question 18:

Show that p – 1 is a factor of p10 – 1 and also of p11 – 1.

Answer:

(i) Let p(x) = p10 – 1;  q(x) = p11 – 1 and g(x) = p – 1
⇒ p – 1 = 0
⇒ â€‹p = 1
For (p – 1) to be a factor of p(x) and q(x),
p(1) = 0 and q(1) = 0
p(1) = (1)10 – 1 = 0
q(1) = (1)11 – 1 = 0

Hence, (p – 1) is a factor of both (p10 – 1) and (p11 – 1).

Page No 20:

Question 19:

For what value of m is x3 – 2mx2 + 16 divisible by x + 2?

Answer:

Let p(x) = x– 2mx+ 16
Since, p(x) is divisible by (x + 2).
p(–2) = 0 (By remainder theorem)
⇒ (–2)– 2m(–2)2 + 16 = 0
⇒ –8 – 8m + 16 = 0
⇒  8m = 8
m = 1
Hence, value of m is 1.

Page No 20:

Question 20:

If x + 2a is a factor of x5 – 4a2x3 + 2x + 2a + 3, find a.

Answer:

Let p(x) = x– 4a2x+ 2+ 2+ 3 and g(x) = x + 2a
Since, g(x) is a factor of p(x).
∴ By remainder theorem.
p(–2a) = 0
⇒ (–2a)5 – 4a2(–2a)3 + 2(–2a) + 2a + 3 = 0
⇒ –32a5 + 32a5 – 4a + 2a + 3 = 0
⇒ –2a + 3 = 0
a 32
Hence, value of a is 32.

Page No 20:

Question 21:

Find the value of m so that 2x – 1 be a factor of 8x4 + 4x3 – 16x2 + 10x + m.

Answer:

Let p(x) =  8x+ 4x– 16x+ 10m and g(x) =  2– 1
g(x) = 0
x12
For g(x) to be a factor of p(x),
p12=0
8124+4123-16122+1012+m=012+12-4+5+m=0
1+1+m=0m=-2

Hence, value of m is –2.



Page No 21:

Question 22:

If x + 1 is a factor of ax3 + x2 – 2x + 4a – 9, find the value of a.

Answer:

Given: p(x) = axx– 2+ 4– 9
g(x) = x + 1
⇒ x + 1 = 0
⇒ x = –1
If g(x) is a factor of p(x)
p(–1) = 0
a(–1)3 + (–1)2 – 2(–1) + 4a – 9 = 0
⇒ –a + 1 + 2 + 4a – 9 = 0
⇒ 3a – 6 = 0
a = 2
Hence, value of a is 2.

Page No 21:

Question 23:

23. Factorise :
(i) x2 + 9x + 18
(ii) 6x2 + 7x – 3
(iii) 2x2 – 7x – 15
(iv) 84 – 2r – 2r2

Answer:

(i) x+ 9+ 18
⇒ x+ 3x +  6+ 18
x(x + 3) + 6(x + 3)
⇒ (x + 3) (x + 6)

(ii) 6x+ 7– 3
⇒ 6x+ 9x – 2– 3
⇒ 3x(2x + 3) – 1(2x + 3)
⇒ (2x + 3) (3x – 1)

(iii) 2x– 7– 15
⇒ 2x– 10x + 3– 15
⇒ 2x(x – 5) + 3(x – 5)
⇒ (2x + 3) (x – 5)

(iv) 84 – 2– 2r2
⇒ –2(r2 + r – 42)
⇒ –2(r2 + 7r – 6r – 42)
⇒ –2(r(r + 7) – 6(r + 7))
⇒ –2(r + 7) (r – 6)

Page No 21:

Question 24:

Factorise :
(i) 2x3 – 3x2 – 17x + 30
(ii) x3 – 6x2 + 11x – 6
(iii) x3 + x2 – 4x – 4
(iv) 3x3 x2 – 3x + 1

Answer:

(i) 2x– 3x– 17+ 30
⇒  2x3 + 2x2 – 12x – 5x– 5+ 30
⇒ 2x(x2 + x – 6) – 5(x2 + x – 6) 
⇒ (2x – 5) (x2 + x –  6)
⇒  (2x – 5) (x2 + 3x – 2x – 6)
⇒  (2x – 5) (x(x + 3) – 2(x + 3))
⇒  (2x – 5) (–  2) (x + 3)

(ii) x– 6x+ 11– 6
⇒ x3 – 5x2 – x2 + 5+ 6x + 30
⇒ x3 – 5x2 + 6x – x2 + 5– 6
xx2 – 5x + 6) – 1(x2 – 5x + 6)
⇒  (x – 1) (x2 – 5x + 6)
⇒   (x – 1) (x(x – 2) – 3 (x – 2))
⇒   (x – 1) (x – 2) (x – 3) 

(iii) xx– 4– 4
⇒  x2(x + 1) – 4(x + 1)
⇒ (x + 1) (x2 – 4)
⇒ (x + 1) (x – 2) (x + 2)

(iv) 3x– x– 3+ 1
⇒  3x– 3x – x2 + 1
⇒  3x(x2 – 1) – 1(x2 – 1)  
⇒  (3x – 1) (x2 – 1)
⇒  (3x – 1) (x – 1) â€‹(x + 1)

Page No 21:

Question 25:

Using suitable identity, evaluate the following:
(i) 1033
(ii) 101 × 102
(iii) 9992

Answer:

(i) (103)3
⇒ (100 + 3)3
⇒ (100)3 + (3)3 + 3 × 100 × 3 (100 + 3)
⇒ 1000000 + 27 + 92700
⇒ 1092727

(ii) 101 × 102
⇒(100 + 1) (100 + 2)
⇒ (100)2 + 100(1 + 2) + 1 × 2
⇒ 10000 + 300 + 2
⇒ 10302

(iii) 9992
⇒ (1000 – 1)2
⇒ (1000)2 + (1)2 – 2 × 1000 × 1
⇒ 1000000 + 1 – 2000
⇒ 998001

Page No 21:

Question 26:

Factorise the following:
(i) 4x2 + 20x + 25
(ii) 9y2 – 66yz + 121z2
(iii) 2x+132-x-122

Answer:

(i) 4x+ 20+ 25
= (2x)2 + 2 × (2x) × (5) + (5)2
= (2x + 5)2                (using (a + b)2 = a2 + 2ab + b2)

(ii) 9y– 66yz + 121z2
= (3y)2 – 2 × (3y) × (11z) + (11z)2
=(3y – 11z)2            (using (b)2 = a2 – 2ab + b2)

(iii) 2x+132-x-122
=2x+13+x-12 2x+13-x-12=2x+13+x-12 2x+13-x+12=3x-16x+56

Page No 21:

Question 27:

Factorise the following :
(i) 9x2 – 12x + 3
(ii) 9x2 – 12x + 4

Answer:

(i) 9x– 12+ 3
= 9x2 – 9x – 3x + 3
= 9x(x – 1) – 3(x – 1)
= (9x – 3) (x – 1)
= 3(3x – 1) (x – 1)

(ii) 9x– 12+ 4
= (3x)2 – 2 × (3x) × (2) + (2)2
=  (3– 2)2                           (∵ (ab)2 = a2 – 2ab + b2)

Page No 21:

Question 28:

Expand the following :
(i) (4a b + 2c)2
(ii) (3a – 5b c)2
(iii) (– x + 2y – 3z)2

Answer:

(i) (4– + 2c)2

Using Identity.
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
∴ (4– + 2c)2 = (4a)2 + (–b)2 + (2c)2 + 2(4a) (–b) + 2(–b) (2c) + 2(2c) (4a)
= 16a2 + b2 + 4c2 – 8ab – 4bc + 16ac 

(ii) (3– 5– c)
Using Identity,
(a + b + c)2a2 + b2 + c2 + 2ab + 2bc + 2ca
∴ (3– 5– c)2 = (3a)2 + (–5b)2 + (–c)2 + 2(3a) (–5b) + 2(–5b) (–c) + 2(3a) (–c)
= 9a2 + 25b2 + c2 – 30ab + 10bc – 6ac 
 
(iii) (– + 2– 3z)2
Using Identity,
(a + b + c)2a2 + b2 + c2 + 2ab + 2bc + 2ca
∴  (– + 2– 3z)2 = (–x)2 + (2y)2 + (–3z)2 + 2(–x) (2y) + 2(2y) (–3z) + 2(–3z) (–x)
= x2 + 4y2 + 9z2 – 4xy – 12yz + 6zx

 

Page No 21:

Question 29:

Factorise the following :
(i) 9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
(ii) 25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
(iii) 16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz

Answer:

(i) 9x+ 4y+ 16z+ 12xy – 16yz – 24xz
=
(3x)+ (2y)+ (–4z)+ 2(3x)(2y) + 2(2y)(–4z) + 2(–4z)(3x)
= (3x + 2y – 4z)2
= (3x + 2y – 4z) (3x + 2y – 4z

(ii) 25x+ 16y+ 4z– 40xy + 16yz – 20xz
(–5x)+ (4y)+ (2z)+ 2(–5x)(4y) + 2(4y)(2z) + 2(2z)(–5x)
= (–5x + 4y + 2z)2
= (–5x + 4y + 2z) (–5x + 4y + 2z)

(iii) 16x+ 4y+ 9z– 16xy – 12yz + 24xz
(–4x)+ (2y)+ (–3z)+ 2(–4x)(2y) + 2(2y)(–3z) + 2(–3z)(–4x)
= (–4x + 2y – 3z)2 
= (–4x + 2y – 3z)  (–4x + 2y – 3z)​

Page No 21:

Question 30:

If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.

Answer:

Given: = 9 and ab bc ca = 26
we know,
(c)2 = (abc2) + 2(ab bc ca)
⇒ (9)2 = (abc2) + 2(26)
⇒ 81 = (abc2) + 52
⇒ (abc2) = 29

Hence, value of (abc2) is 29.

Page No 21:

Question 31:

Expand the following :
(i) (3a – 2b)3

(ii) 1x+y33

(iii) 4-13x3

Answer:

(i) (3– 2b)3 
we know,
(b)3 = a3 – b3 – 3ab(a – b)
∴ (3– 2b)3 = (3a)3 – (2b)3 – 3(3a)(2b)(3a – 2b)
= 27a3 – 8b3 – 18ab (3– 2b)
= 27a3 – 8b3 – 54a2b + 36ab2

(ii) 1x+y33
we know,
(a + b)3 = a3 + b3 + 3a2b + 3ab2
1x+y33=1x3+y33+31x2y3+31xy32=1x3+y327+yx2+y23x

(iii) 4-13x3
we know,
(a – b)3 = a3 – b3 – 3a2b + 3ab2
4-13x3=43-13x3-34213x+3413x2= 64-127x3-16x+43x2




 

Page No 21:

Question 32:

Factorise the following :
(i) 1 – 64a3 – 12a + 48a2
(ii) 8p3+125p2+625p+1125

Answer:

(i) 1 – 64a– 12+ 48a2
= (1)3 – (4a)3 – 3(1)2(4a) + 3(1)(4a)2 
= (1 – 4a)3   (∵ Using (a – b)3 = a3 – b3 – 3a2b + 3ab2)

(ii) 8p3+125p2+625p+1125
=(2p)3+3(2p)215+3(2p)152+153=2p+153           (a + b)3=a3+b3+3a2b+3ab2



Page No 22:

Question 33:

Find the following products :
(i) x2+2y x24-xy+4y2
(ii) (x2 – 1) (x4 + x2 + 1)

Answer:


(i) x2+2y x24-xy+4y2
=x2+2y x22- x2(2y) + (2y)2
Using Identity,
a3 + b3 = (a + b) (a2 – ab + b2)
we get,
=x23+(2y)3 =x38+8y3

(ii) (x– 1) (xx+ 1)
= (x– 1) ((x2)2 + (x)2(1) + (1)2)
Using Identity,
a3 – b3 = (a – b) (a2 + ab + b2)
we get,
= (x2)– (1)3
= x6 – 1

Page No 22:

Question 34:

Factorise :
(i) 1 + 64x3
(ii) a3-22b3

Answer:

(i) 1 + 64x3 
we know,
a3 + b3 = (a + b) (a2 ab + b2)
Now,
1 + 64x3 = (1)3 + (4x)3
= (1 + 4x) (1 – 4x + 16x2)

(ii) a3-22b3 
we know,
a3 – b3 = (a – b) (a2 + ab b2)
Now,
a3 - 22 = (a)3 - (2b)3=(a-2b) (a2+2ab+2b2)

Page No 22:

Question 35:

Find the following product :
(2x y + 3z) (4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)

Answer:

we know,
(a + b + c) (a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc
Now,
(2– + 3z) (4xy+ 9z+ 2xy + 3yz – 6xz)
= (2x + (–y) + 3z)((2x)2 + (–y)2 + (3z)2 – (2x)(–y) – (–y)(3z) – (3z)(2x))
= (2x)3 + (–y)3 + (3z)3 – 3(2x) (–y) (3z)
= 8x3 – y3 + 27z3 + 18xyz

Page No 22:

Question 36:

Factorise :
(i) a3 – 8b3 – 64c3 – 24abc 
(ii) 22a3+8b3-27c3+182abc.

Answer:

(i) a– 8b– 64c– 24abc 
we know,
x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2xyyz – zx)
Now,
(a)3 + (–2b)3 + (–4c)3 – 3(a)(–2b)(–4c)
= {(a – 2b – 4c) ((a)2 + (–2b)2 + (–4c)2 –(a)(–2b) – (–2b)(–4c) – (–4c)(a)}
= {(a – 2b –4c) (a2 + 4b2 + 16c2 + 2ab – 8bc + 4ca)}

(ii) 22a3+8b3-27c3+182abc.
we know,
x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
Now,
2a3+2b3+-3c3 -32a2b-3c=2a+2b-3c2a2+2b2+3c2-2a2b-2b-3c--3c2a=2a+2b-3c2a2+4b2+9c2-22ab+6bc+32ac

Page No 22:

Question 37:

Without actually calculating the cubes, find the value of :
(i) 123+133-563

(ii) (0.2)3 – (0.3)3 + (0.1)3

Answer:

(i) 123+133-563
Let x=12,  y=13    and    z=-56
x+y+z=0
We know,
if  x + y + z = 0
then, x3 + y3 + z3 = 3xyz
 123+133+ -563=31213-56=-512


(ii) (0.2)– (0.3)+ (0.1)3
Let x = 0.2, y = –0.3, z = 0.1
x+y+z=0
we know,
if  x + y + z = 0
then, x3 + y3 + z3 = 3xyz

 (0.2)3+(-0.3)3+(0.1)3=3(0.2)(-0.3)(0.1)=-0.018=-9500

Page No 22:

Question 38:

Without finding the cubes, factorise (x – 2y)3 + (2y – 3z)3 + (3z x)3

Answer:

(– 2y)+ (2– 3z)+ (3– x)
Let a = x – 2y , b = 2y – 3z, c = 3z – x
If a + b + c = 0  (∴ x – 2y + 2y + 2y – 3z + 3z + 3z + 3z – x = 0)
then,  a3 + b3 + c3 = 3abc
∴ (x – 2y)3 +  (2y – 3z)3 + (3z – x)3
= 3(– 2y) (2– 3z) (3z x)
 

Page No 22:

Question 39:

Find the value of
(i) x3 + y3 – 12xy + 64, when x + y = – 4
(ii) x3 – 8y3 – 36xy – 216, when x = 2y + 6

Answer:


(i) we know
a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2c2 – ab – bc – ca)
x3 + y3 – 12xy + 64
= (x)3 + (y)3 + (4)– 3(x)(y)(4)
= 0(x2 + y2 + 16 – xy – 4y – 4x)                        (∵ x + y = –4)
= 0

(ii) we know,
a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
x3 – 8y3 – 36xy – 216
= (x)3 + (–2y)3 + (–6)– 3(x)(–2y)(–6)
= (x – 2y – 6) (x2 + 4y2 + 36 + 2xy – 12y + 6x)
Now,  x – 2y = 6   (given)
= (6 – 6) (x2 + 4y2 + 36 + 2xy – 2xy – 12y + 6x)
= 0

Page No 22:

Question 40:

Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.

Answer:

Given: Area = 4a2 + 4a – 3
we know,
Area of rectangle = length × breadth
Using the Method of splitting middle term,
4a2 + 4a – 3
= 4a2 + 6a – 2a – 3
= 2a(2a + 3) – 1(2a + 3)
= (2a – 1) (2a + 3)
∴ length × breadth = (2a – 1) (2a + 3)
Hence, Possible expression for length and breadth
length = (2a – 1), breadth = 2a + 3 or
length = (2a + 3), breadth = 2a – 1



Page No 23:

Question 1:

If the polynomials az3 + 4z2 + 3z – 4 and z3 – 4z + a leave the same remainder when divided by z – 3, find the value of a.

Answer:

Let p(z) = az3 + 4z2 + 3z – 4, q(z) = z3 – 4z + a, r(z) = z – 3
Now, zero of r(z),
r(z) = 0
z – 3 = 0
z = 3

By remainder theorem, we have
p(3) = q(3)
p(3) = q(3)
a(3)3 + 4(3)2 + 3(3) – 4 = (3)3 – 4(3) + a
⇒ 27a + 36 + 9 – 4 = 27 – 12 + a
⇒ 27aa = 15 – 41
⇒ 26a = –26
a = –1

Page No 23:

Question 2:

The polynomial p(x) = x4 – 2x3 + 3x2 ax + 3a – 7 when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.

Answer:

Given:  p(x) = x– 2x+ 3x– ax + 3– 7 
when p(x) is divided by (x + 1), remainder is 19.
By Remainder Theorem, we have
p(–1) = 19
⇒ (–1)4 – 2(–1)3 + 3(–1)2a(–1) + 3a – 7 = 19
⇒ 1 + 2 + 3 + a + 3a – 7 = 19
⇒ 4a – 1 = 19
⇒4a = 20
a = 5
Thus, the value of a is 5.

Therefore,  p(x) = x– 2x+ 3x– 5+ 8
Now, when p(x) is divided by (x + 2), remainder will be p(–2)
p(–2) = (–2)4 – 2(–2)3 + 3(–2)2 –5(–2) + 8
= 16 + 16 + 12 + 10 + 8
= 62

Hence, the remainder of polynomial p(x) when divided by (x + 2) is 62.

Page No 23:

Question 3:

If both x – 2 and x-12 are factors of px2 + 5x + r, show that p = r.

Answer:

 Let Q(x) = px+ 5r
(x – 2) and x-12 are factors of Q(x).
Q(2) = 0
p(2)2 + 5(2) + r = 0
​⇒ 4p + r + 10 = 0          .....(1)

Also,
    Q12=0
p122+512+r = 0p4+r+52=0p+4r+10=0                .....2

Now, subtracting the equations (1) and (2),
(4pp) + (r – 4r) + (10 – 10) = 0
⇒ 3p – 3r = 0
p = r

Hence, proved.

Page No 23:

Question 4:

Without actual division, prove that 2x4 – 5x3 + 2x2 x + 2 is divisible by x2 – 3x + 2.

Answer:

Let p(x) = 2x– 5x+ 2x– + 2
Now,
x
2 –3x + 2
= x2 – 2xx + 2        (By splitting Middle term)
= x(x – 2) – 1(x – 2)
= (x – 1) (x – 2)

Therefore, p(x) is divisible by x2 –3x + 2, if p(1) = 0 and p(2) = 0
p(1) = 2(1)4 – 5(1)3 + 2(1)2 – (1) + 2
= 2 – 5 + 2 – 1 + 2
= 0
Also,
p(2) = 2(1)4 – 5(2)3 + 2(2)2 – (2) + 2
= 32 – 40 + 8 – 2 + 2
= 0
Hence, p(x) is divisible by x2 – 3x + 2.

Page No 23:

Question 5:

Simplify (2x – 5y)3 – (2x + 5y)3.

Answer:

(2– 5y)– (2+ 5y)3
we have,
(ab)3 = a3b3 – 3ab(ab)
(a + b)3 = a3 + b3 + 3ab(a + b)

∴ (2– 5y)– (2+ 5y)3
= (8x3 – 125y3 – 30xy(2x – 5y)) – (8x3 + 125y3 + 30xy(2x + 5y))
= 8x3 – 125y3 – 60x2y + 150xy2 – 8x3 – 125y3 – 60x2y – 150xy
= – 250y3 – 120x2y

Page No 23:

Question 6:

Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).

Answer:

Now, (x+ 4yz+ 2xy xz – 2yz) (–– 2y)
= x2(–z + x – 2y) + 4y2(–z + x – 2y) + z2(–z + x – 2y) + 2xy(–z + x – 2y) + xz(–z + x – 2y) – 2yz(–z + x – 2y)
= –x2z + x3 – 2x2y – 4y2z + 4xy2 – 8y3 z3 + xz2 – 2yz2 – 2xyz + 2x2y – 4xy2 – xz2 + x2z – 2xyz + 2yz2 – 2xyz + 4y2z
= (–x2z + x2z) + x3 + (–2yz2 –2x2y) + (–4y2z + 4y2z) + (4xy2 – 4xy2) – 3y3z3 + (xz2xz2) + (2yz2 – 2yz2) + (–2xyz – 2xyz – 2xyz)
= x3 – 3y3z3 – 6xyz

Page No 23:

Question 7:

If a, b, c are all non-zero and a + b + c = 0, prove that a2bc+b2ca+c2ab=3.

Answer:

Given: = 0
Now,
a2bc+b2ca+c2ab=3
=a2+b2+c2abc=(a+b+c) (a2+b2+c2-ab-bc-ca)+3abcabc
=3abcabc              a+b+c=0= 3

Hence, the required value is 3.

Page No 23:

Question 8:

If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.

Answer:

Given: = 5, ab bc ca = 10
Now,
(c)2 = 52
abc2 + 2(ab + bc + ca) = 25
abc2 + 2 × 10 = 25
abc2 = 5

We know,
 abc– 3abc = (c) (abc2 – (ab + bc ca))

= 5(5 –10)
= 5 × (–5)
= –25
Hence proved.

Page No 23:

Question 9:

Prove that (a + b + c)3 a3 b3 c3 = 3(a + b) (b + c) (c + a).

Answer:

[(b) c]= (a + b)3 + 3(a + b)2c + 3(a + b)c2 + c3
= (a3 + 3a2b + 3ab2 + b3) + 3(a2 + 2ab + b2)c +3(a + b)c2 + c3
= a3 + 3a2b + 3ab2 + b3 + 3a2c + 6abc + b2c + 3ac2 + 3bc2 + c3
= a3 + b3 + c3 + 3a2b + 3a2c + 3ab2 + 3b2c + 3ac2 + 3bc2 + 6abc
= a3 + b3 + c3 + 3a(ab + ac + b2 + bc) + 3c(ab + ac + b2 + bc)
= a3 + b3 + c3 + 3(a + c) (ab + ac + b2 + bc)
= a3 + b3 + c3 + 3(a + c) (a + b) (b + c)
(a + b + c)3a3b3 – c3 = 3(a + c) (b + c) (a + b)

Hence, proved.



View NCERT Solutions for all chapters of Class 9