Rd Sharma XII Vol 1 2021 Solutions for Class 12 Science Maths Chapter 6 Adjoint And Inverse Of Matrix are provided here with simple step-by-step explanations. These solutions for Adjoint And Inverse Of Matrix are extremely popular among Class 12 Science students for Maths Adjoint And Inverse Of Matrix Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rd Sharma XII Vol 1 2021 Book of Class 12 Science Maths Chapter 6 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Rd Sharma XII Vol 1 2021 Solutions. All Rd Sharma XII Vol 1 2021 Solutions for class Class 12 Science Maths are prepared by experts and are 100% accurate.

#### Question 1:

Find the adjoint of each of the following matrices:

(i) $\left[\begin{array}{cc}-3& 5\\ 2& 4\end{array}\right]$

(ii) $\left[\begin{array}{cc}a& b\\ c& d\end{array}\right]$

(iii)

(iv)

Verify that (adj A) A = |A| I = A (adj A) for the above matrices.

Given below are the squares matrices. Here, we will interchange the diagonal elements and change the signs of
the off-diagonal elements.

s.

#### Question 2:

Compute the adjoint of each of the following matrices:

(i) $\left[\begin{array}{ccc}1& 2& 2\\ 2& 1& 2\\ 2& 2& 1\end{array}\right]$

(ii) $\left[\begin{array}{ccc}1& 2& 5\\ 2& 3& 1\\ -1& 1& 1\end{array}\right]$

(iii) $\left[\begin{array}{ccc}2& -1& 3\\ 4& 2& 5\\ 0& 4& -1\end{array}\right]$

(iv) $\left[\begin{array}{ccc}2& 0& -1\\ 5& 1& 0\\ 1& 1& 3\end{array}\right]$

Verify that (adj AA = |AI = A (adj A) for the above matrices.

#### Question 3:

For the matrix $A=\left[\begin{array}{ccc}1& -1& 1\\ 2& 3& 0\\ 18& 2& 10\end{array}\right]$, show that A (adj A) = O.

#### Question 4:

If $A=\left[\begin{array}{ccc}-4& -3& -3\\ 1& 0& 1\\ 4& 4& 3\end{array}\right]$, show that adj A = A.

#### Question 5:

If $A=\left[\begin{array}{ccc}-1& -2& -2\\ 2& 1& -2\\ 2& -2& 1\end{array}\right]$, show that adj A = 3AT.

#### Question 6:

Find A (adj A) for the matrix $A=\left[\begin{array}{ccc}1& -2& 3\\ 0& 2& -1\\ -4& 5& 2\end{array}\right].$

#### Question 7:

Find the inverse of each of the following matrices:

(i)

(ii) $\left[\begin{array}{cc}0& 1\\ 1& 0\end{array}\right]$

(iii) $\left[\begin{array}{cc}a& b\\ c& \frac{1+bc}{a}\end{array}\right]$

(iv) $\left[\begin{array}{cc}2& 5\\ -3& 1\end{array}\right]$

#### Question 8:

Find the inverse of each of the following matrices.

(i) $\left[\begin{array}{ccc}1& 2& 3\\ 2& 3& 1\\ 3& 1& 2\end{array}\right]$

(ii) $\left[\begin{array}{ccc}1& 2& 5\\ 1& -1& -1\\ 2& 3& -1\end{array}\right]$

(iii) $\left[\begin{array}{ccc}2& -1& 1\\ -1& 2& -1\\ 1& -1& 2\end{array}\right]$

(iv) $\left[\begin{array}{ccc}2& 0& -1\\ 5& 1& 0\\ 0& 1& 3\end{array}\right]$

(v) $\left[\begin{array}{ccc}0& 1& -1\\ 4& -3& 4\\ 3& -3& 4\end{array}\right]$

(vi) $\left[\begin{array}{ccc}0& 0& -1\\ 3& 4& 5\\ -2& -4& -7\end{array}\right]$

(vii)

#### Question 9:

Find the inverse of each of the following matrices and verify that .

(i) $\left[\begin{array}{ccc}1& 3& 3\\ 1& 4& 3\\ 1& 3& 4\end{array}\right]$

(ii) $\left[\begin{array}{ccc}2& 3& 1\\ 3& 4& 1\\ 3& 7& 2\end{array}\right]$

#### Question 10:

For the following pairs of matrices verity that

(i)

(ii)

(AB)1=B1 A1  (AB)1=B1 A1(AB)1=B1 A1

Let

#### Question 12:

Given $A=\left[\begin{array}{cc}2& -3\\ -4& 7\end{array}\right]$, compute A−1 and show that $2{A}^{-1}=9I-A.$

#### Question 13:

If $A=\left[\begin{array}{cc}4& 5\\ 2& 1\end{array}\right]$, then show that

#### Question 14:

Find the inverse of the matrix $A=\left[\begin{array}{cc}a& b\\ c& \frac{1+bc}{a}\end{array}\right]$ and show that

#### Question 15:

Given . Compute (AB)−1.

We have,

Let

Show that
(i)
(ii)
(iii) .

​

#### Question 17:

If $A=\left[\begin{array}{cc}2& 3\\ 1& 2\end{array}\right]$, verify that . Hence, find A−1.

#### Question 18:

Show that $A=\left[\begin{array}{cc}-8& 5\\ 2& 4\end{array}\right]$ satisfies the equation ${A}^{2}+4A-42I=O$. Hence, find A−1.

#### Question 19:

If $A=\left[\begin{array}{cc}3& 1\\ -1& 2\end{array}\right]$, show that ${A}^{2}-5A+7I=O$.  Hence, find A−1.

#### Question 20:

If $A=\left[\begin{array}{cc}4& 3\\ 2& 5\end{array}\right]$, find x and y such that ${A}^{2}=xA+yI=O$. Hence, evaluate A−1.

#### Question 21:

If $A=\left[\begin{array}{cc}3& -2\\ 4& -2\end{array}\right]$, find the value of $\lambda$ so that ${A}^{2}=\lambda A-2I$. Hence, find A−1.

#### Question 22:

Show that $A=\left[\begin{array}{cc}5& 3\\ -1& -2\end{array}\right]$ satisfies the equation ${x}^{2}-3x-7=0$. Thus, find A−1.

#### Question 23:

Show that $A=\left[\begin{array}{cc}6& 5\\ 7& 6\end{array}\right]$ satisfies the equation ${x}^{2}-12x+1=O$. Thus, find A−1.

#### Question 24:

For the matrix $A=\left[\begin{array}{ccc}1& 1& 1\\ 1& 2& -3\\ 2& -1& 3\end{array}\right]$. Show that . Hence, find A−1.

#### Question 25:

Show that the matrix, $A=\left[\begin{array}{ccc}1& 0& -2\\ -2& -1& 2\\ 3& 4& 1\end{array}\right]$ satisfies the equation, ${A}^{3}-{A}^{2}-3A-{I}_{3}=O$. Hence, find A−1.

#### Question 26:

If $A=\left[\begin{array}{ccc}2& -1& 1\\ -1& 2& -1\\ 1& -1& 2\end{array}\right]$. Verify that ${A}^{3}-6{A}^{2}+9A-4I=O$ and hence find A−1.

#### Question 27:

If $A=\frac{1}{9}\left[\begin{array}{ccc}-8& 1& 4\\ 4& 4& 7\\ 1& -8& 4\end{array}\right]$, prove that ${A}^{-1}={A}^{3}$.

#### Question 28:

If $A=\left[\begin{array}{ccc}3& -3& 4\\ 2& -3& 4\\ 0& -1& 1\end{array}\right]$, show that ${A}^{-1}={A}^{3}$.

#### Question 29:

If $A=\left[\begin{array}{ccc}-1& 2& 0\\ -1& 1& 1\\ 0& 1& 0\end{array}\right]$, show that ${A}^{2}={A}^{-1}.$

#### Question 30:

Solve the matrix equation $\left[\begin{array}{cc}5& 4\\ 1& 1\end{array}\right]X=\left[\begin{array}{cc}1& -2\\ 1& 3\end{array}\right]$, where X is a 2 × 2 matrix.

#### Question 31:

Find the matrix X satisfying the matrix equation

$X\left[\begin{array}{cc}5& 3\\ -1& -2\end{array}\right]=\left[\begin{array}{cc}14& 7\\ 7& 7\end{array}\right]$.

#### Question 32:

Find the matrix X for which

#### Question 33:

Find the matrix X satisfying the equation

#### Question 34:

If $A=\left[\begin{array}{ccc}1& 2& 2\\ 2& 1& 2\\ 2& 2& 1\end{array}\right]$, find ${A}^{-1}$ and prove that ${A}^{2}-4A-5I=O$

Prove that .

#### Question 36:

We know that (AB)1 = B1 A1.

#### Question 37:

If

We know that (AT)1 = (A1)T.

#### Question 38:

Find the adjoint of the matrix $A=\left[\begin{array}{ccc}-1& -2& -2\\ 2& 1& -2\\ 2& -2& 1\end{array}\right]$ and hence show that .

#### Question 1:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{cc}7& 1\\ 4& -3\end{array}\right]$

#### Question 2:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{cc}5& 2\\ 2& 1\end{array}\right]$

#### Question 3:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{cc}1& 6\\ -3& 5\end{array}\right]$

#### Question 4:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{cc}2& 5\\ 1& 3\end{array}\right]$

#### Question 5:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{cc}3& 10\\ 2& 7\end{array}\right]$

#### Question 6:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}0& 1& 2\\ 1& 2& 3\\ 3& 1& 1\end{array}\right]$

#### Question 7:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}2& 0& -1\\ 5& 1& 0\\ 0& 1& 3\end{array}\right]$

#### Question 8:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}2& 3& 1\\ 2& 4& 1\\ 3& 7& 2\end{array}\right]$

#### Question 9:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}3& -3& 4\\ 2& -3& 4\\ 0& -1& 1\end{array}\right]$

#### Question 10:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}1& 2& 0\\ 2& 3& -1\\ 1& -1& 3\end{array}\right]$

#### Question 11:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}2& -1& 3\\ 1& 2& 4\\ 3& 1& 1\end{array}\right]$

#### Question 12:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}1& 1& 2\\ 3& 1& 1\\ 2& 3& 1\end{array}\right]$

#### Question 13:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}2& -1& 4\\ 4& 0& 7\\ 3& -2& 7\end{array}\right]$

#### Question 14:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}3& 0& -1\\ 2& 3& 0\\ 0& 4& 1\end{array}\right]$

#### Question 15:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}1& 3& -2\\ -3& 0& -1\\ 2& 1& 0\end{array}\right]$

#### Question 16:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}-1& 1& 2\\ 1& 2& 3\\ 3& 1& 1\end{array}\right]$

#### Question 17:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}1& 2& 3\\ 2& 5& 7\\ -2& -4& -5\end{array}\right]$

A = IA
$A=\left[\begin{array}{ccc}1& 2& 3\\ 2& 5& 7\\ -2& -4& -5\end{array}\right]$

$\left[\begin{array}{ccc}1& 2& 3\\ 2& 5& 7\\ -2& -4& -5\end{array}\right]=\left[\begin{array}{ccc}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]A\phantom{\rule{0ex}{0ex}}{R}_{2}\to {R}_{2}-2{R}_{1}\phantom{\rule{0ex}{0ex}}\left[\begin{array}{ccc}1& 2& 3\\ 0& 1& 1\\ -2& -4& -5\end{array}\right]=\left[\begin{array}{ccc}1& 0& 0\\ -2& 1& 0\\ 0& 0& 1\end{array}\right]\phantom{\rule{0ex}{0ex}}{R}_{3}\to {R}_{3}+2{R}_{1}\phantom{\rule{0ex}{0ex}}\left[\begin{array}{ccc}1& 2& 3\\ 0& 1& 1\\ 0& 0& 1\end{array}\right]=\left[\begin{array}{ccc}1& 0& 0\\ -2& 1& 0\\ 2& 0& 1\end{array}\right]\phantom{\rule{0ex}{0ex}}{R}_{2}\to {R}_{2}-{R}_{3}\phantom{\rule{0ex}{0ex}}\left[\begin{array}{ccc}1& 2& 3\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]=\left[\begin{array}{ccc}1& 0& 0\\ -4& 1& -1\\ 2& 0& 1\end{array}\right]\phantom{\rule{0ex}{0ex}}$

${R}_{1}\to {R}_{1}-3{R}_{3}\phantom{\rule{0ex}{0ex}}\left[\begin{array}{ccc}1& 2& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]=\left[\begin{array}{ccc}-5& 0& -3\\ -4& 1& -1\\ 2& 0& 1\end{array}\right]\phantom{\rule{0ex}{0ex}}{R}_{1}\to {R}_{1}-2{R}_{2}\phantom{\rule{0ex}{0ex}}\left[\begin{array}{ccc}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]=\left[\begin{array}{ccc}3& -2& -1\\ -4& 1& -1\\ 2& 0& 1\end{array}\right]$

Therefore,
${A}^{-1}=\left[\begin{array}{ccc}3& -2& -1\\ -4& 1& -1\\ 2& 0& 1\end{array}\right]$

#### Question 18:

Find the inverse of each of the following matrices by using elementary row transformations:

$\left[\begin{array}{ccc}2& -3& 5\\ 3& 2& -4\\ 1& 1& -2\end{array}\right]$

Let $A=\left[\begin{array}{ccc}2& -3& 5\\ 3& 2& -4\\ 1& 1& -2\end{array}\right]$

#### Question 1:

If A is an invertible matrix, then which of the following is not true
(a) ${\left({A}^{2}\right)}^{-1}={\left({A}^{-1}\right)}^{2}$
(b) $\left|{A}^{-1}\right|={\left|A\right|}^{-1}$
(c) ${\left({A}^{T}\right)}^{-1}={\left({A}^{-1}\right)}^{T}$
(d) $\left|A\right|\ne 0$

(a) ${\left({A}^{2}\right)}^{-1}={\left({A}^{-1}\right)}^{2}$

We have,  $\left|{A}^{-1}\right|={\left|A\right|}^{-1}$, ${\left({A}^{T}\right)}^{-1}={\left({A}^{-1}\right)}^{T}$ and $\left|A\right|\ne 0$ all are the properties of the inverse of a matrix A

#### Question 2:

If A is an invertible matrix of order 3, then which of the following is not true
(a)
(b) ${\left({A}^{-1}\right)}^{-1}=A$
(c) If , where B and C are square matrices of order 3
(d)

(c) If $BA=CA$, then $B\ne C$ where B and C are square matrices of order 3.

If A is an invertible matrix, then ${A}^{-1}$ exists.

Now,
$BA=CA$
On multiplying both sides by ${A}^{-1}$, we get
$BA{A}^{-1}=CA{A}^{-1}$

Therefore, the statement ​given in (c) is not true.

#### Question 3:

If

(a) is a skew-symmetric matrix
(b) A−1 + B−1
(c) does not exist
(d) none of these

(d) none of these

#### Question 4:

If $S=\left[\begin{array}{cc}a& b\\ c& d\end{array}\right]$, then adj A is

(a) $\left[\begin{array}{cc}-d& -b\\ -c& a\end{array}\right]$

(b) $\left[\begin{array}{cc}d& -b\\ -c& a\end{array}\right]$

(c) $\left[\begin{array}{cc}d& b\\ c& a\end{array}\right]$

(d) $\left[\begin{array}{cc}d& c\\ b& a\end{array}\right]$

(b) $\left[\begin{array}{cc}d& -b\\ -c& a\end{array}\right]$

Adjoint of a square matrix of order 2 is obtained by interchanging the diagonal elements and changing the signs of off-diagonal elements.

Here,

#### Question 5:

If A is a singular matrix, then adj A is
(a) non-singular
(b) singular
(c) symmetric
(d) not defined

(b) singular

#### Question 6:

If A, B are two n × n non-singular matrices, then
(a) AB is non-singular
(b) AB is singular
(c)
(d) (AB)−1 does not exist

(a) AB is non-singular

#### Question 7:

If $A=\left[\begin{array}{ccc}a& 0& 0\\ 0& a& 0\\ 0& 0& a\end{array}\right]$, then the value of |adj A| is

(a) a27
(b) a9
(c) a6
(d) a2

(c) a6

#### Question 8:

If $A=\left[\begin{array}{ccc}1& 2& -1\\ -1& 1& 2\\ 2& -1& 1\end{array}\right]$, then ded (adj (adj A)) is

(a) 144
(b) 143
(c) 142
(d) 14

(a) 144

#### Question 9:

If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to
(a) Det (A−1)
(b) Det (B−1)
(c) Det (A)
(d) Det (B)

(c) Det (A)

#### Question 10:

For any 2 × 2 matrix, if , then |A| is equal to
(a) 20
(c) 100
(d) 10
(d) 0

#### Question 11:

If A5 = O such that equals
(a) A4
(b) A3
(c) I + A
(d) none of these

#### Question 12:

If A satisfies the equation ${x}^{3}-5{x}^{2}+4x+\lambda =0$ then A−1 exists if
(a) $\lambda \ne 1$
(b) $\lambda \ne 2$
(c) $\lambda \ne -1$
(d) $\lambda \ne 0$

#### Question 13:

If for the matrix A, A3 = I, then A−1 =
(a) A2
(b) A3
(c) A
(d) none of these

#### Question 14:

If A and B are square matrices such that B = − A−1 BA, then (A + B)2 =
(a) O
(b) A2 + B2
(c) A2 + 2AB + B2
(d) A + B

(b) ${A}^{2}+{B}^{2}$

#### Question 15:

If

(a) 5A
(b) 10A
(c) 16A
(d) 32A

(c) 16A

$A=\left[\begin{array}{ccc}2& 0& 0\\ 0& 2& 0\\ 0& 0& 2\end{array}\right]\phantom{\rule{0ex}{0ex}}⇒A=2\left[\begin{array}{ccc}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]\phantom{\rule{0ex}{0ex}}⇒A=2I\phantom{\rule{0ex}{0ex}}⇒{A}^{5}={\left(2I\right)}^{5}\phantom{\rule{0ex}{0ex}}⇒{A}^{5}=16×2I\phantom{\rule{0ex}{0ex}}⇒{A}^{5}=16\left[\begin{array}{ccc}2& 0& 0\\ 0& 2& 0\\ 0& 0& 2\end{array}\right]\phantom{\rule{0ex}{0ex}}⇒{A}^{5}=16A$

#### Question 16:

For non-singular square matrix A, B and C of the same order
(a)
(b)
(c) $CB{A}^{-1}$
(d)

Disclaimer: In Quesion, We are to find the inverse of . The inverse is missing in the question.

(d)

We have,

#### Question 17:

The matrix $\left[\begin{array}{ccc}5& 10& 3\\ -2& -4& 6\\ -1& -2& b\end{array}\right]$ is a singular matrix, if the value of b is
(a) − 3
(b) 3
(c) 0
(d) non-existent

(d) non-existent
For any singular matrix, the value of the determinant is 0.
Here,

$A=\left[\begin{array}{ccc}5& 10& 3\\ -2& -4& 6\\ -1& -2& b\end{array}\right]\phantom{\rule{0ex}{0ex}}\left|A\right|=5\left(-4b+12\right)-10\left(-2b+6\right)+3\left(4-4\right)=0\phantom{\rule{0ex}{0ex}}⇒-20b+60+20b-12=0$

Hence, b is non-existent.

#### Question 18:

If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is
(a) dn
(b) dn−1
(c) dn+1
(d) d

(b) dn−1

We know,
$\left|\mathrm{adj}A\right|={\left|A\right|}^{n-1}$
$⇒\left|\mathrm{adj}A\right|={d}^{n-1}$

#### Question 19:

If A is a matrix of order 3 and |A| = 8, then |adj A| =
(a) 1
(b) 2
(c) 23
(d) 26

(d) ${2}^{6}$

#### Question 20:

If ${A}^{2}-A+I=0$, then the inverse of A is
(a) A2
(b) A + I
(c) IA
(d) AI

(c) IA

#### Question 21:

If A and B are invertible matrices, which of the following statement is not correct.
(a)
(b)
(c) ${\left(A+B\right)}^{-1}={A}^{-1}+{B}^{-1}$
(d)

(c) ${\left(A+B\right)}^{-1}={A}^{-1}+{B}^{-1}$

We have, , and all are the properites of inverse of a matrix.

#### Question 22:

If A is a square matrix such that A2 = I, then A1 is equal to
(a) A + I
(b) A
(c) 0
(d) 2A

(b) A

$\mathrm{Given}: {A}^{2}=I\phantom{\rule{0ex}{0ex}}$
On multiplying both sides by ${A}^{-1}$ , we get

${A}^{-1}{A}^{2}={A}^{-1}I\phantom{\rule{0ex}{0ex}}⇒A={A}^{-1}I\phantom{\rule{0ex}{0ex}}⇒A={A}^{-1}$

#### Question 23:

Let and X be a matrix such that A = BX, then X is equal to

(a) $\frac{1}{2}\left[\begin{array}{cc}2& 4\\ 3& -5\end{array}\right]$

(b) $\frac{1}{2}\left[\begin{array}{cc}-2& 4\\ 3& 5\end{array}\right]$

(c) $\left[\begin{array}{cc}2& 4\\ 3& -5\end{array}\right]$

(d) none of these.

(a) $\frac{1}{2}\left[\begin{array}{cc}2& 4\\ 3& -5\end{array}\right]$

#### Question 24:

If $A=\left[\begin{array}{cc}2& 3\\ 5& -2\end{array}\right]$ be such that ${A}^{-1}=kA$, then k equals
(a) 19
(b) 1/19
(c) − 19
(d) − 1/19

(b) 1/19

#### Question 25:

If $A=\frac{1}{3}\left[\begin{array}{ccc}1& 1& 2\\ 2& 1& -2\\ x& 2& y\end{array}\right]$ is orthogonal, then x + y =
(a) 3
(b) 0
(c) − 3
(d) 1

#### Question 26:

If equals
(a) A
(b) − A
(c) ab A
(d) none of these

(d) none of these

#### Question 27:

If , then

(a)
(b)
(c)
(d) none of these

(b)

#### Question 28:

If a matrix A is such that 3 equal to
(a)
(b)
(c)
(d) none of these

(d) none of these

$3{A}^{3}+2{A}^{2}+5A+I=0\phantom{\rule{0ex}{0ex}}⇒3{A}^{3}+2{A}^{2}+5A=-I\phantom{\rule{0ex}{0ex}}⇒{A}^{-1}\left(3{A}^{3}+2{A}^{2}+5A\right)=-I{A}^{-1}\phantom{\rule{0ex}{0ex}}⇒3{A}^{2}+2A+5I=-{A}^{-1}\phantom{\rule{0ex}{0ex}}⇒{A}^{-1}=-3{A}^{2}-2A-5I\phantom{\rule{0ex}{0ex}}$

#### Question 29:

If A is an invertible matrix, then det (A1) is equal to
(a)
(b)
(c) 1
(d) none of these

(b)

We know that for any invertible matrix A, $\left|{A}^{-1}\right|$ = $\frac{1}{\left|A\right|}$.

#### Question 30:

If

(a) $A=\left[\begin{array}{cc}1& 0\\ 0& 1\end{array}\right]$, if n is an even natural number

(b) $A=\left[\begin{array}{cc}1& 0\\ 0& 1\end{array}\right]$, if n is an odd natural number

(c)

(d) none of these

Disclaimer: In all option, the power of A (i.e. n is missing)

(a) ${A}^{n}=\left[\begin{array}{cc}1& 0\\ 0& 1\end{array}\right]$, if n is an even natural number

$A=\left[\begin{array}{cc}2& -1\\ 3& -2\end{array}\right]\phantom{\rule{0ex}{0ex}}{A}^{2}=\left[\begin{array}{cc}1& 0\\ 0& 1\end{array}\right]\phantom{\rule{0ex}{0ex}}⇒A×A=I\phantom{\rule{0ex}{0ex}}⇒{A}^{-1}=A\phantom{\rule{0ex}{0ex}}$

Generally,

#### Question 31:

If x, y, z are non-zero real numbers, then the inverse of the matrix $A=\left[\begin{array}{ccc}x& 0& 0\\ 0& y& 0\\ 0& 0& z\end{array}\right]$, is
(a) $\left[\begin{array}{ccc}{x}^{-1}& 0& 0\\ 0& {y}^{-1}& 0\\ 0& 0& {z}^{-1}\end{array}\right]$

(b)

(c) $\frac{1}{xyz}\left[\begin{array}{ccc}x& 0& 0\\ 0& y& 0\\ 0& 0& z\end{array}\right]$

(d)

(a) $\left[\begin{array}{ccc}{x}^{-1}& 0& 0\\ 0& {y}^{-1}& 0\\ 0& 0& {z}^{-1}\end{array}\right]$

#### Question 32:

If A and B are invertible matrices, then which one of the following is not correct?
(a) adj A$\left|A\right|$ A-1                         (b) det (A-1) = [det(A)]-1
(c) (AB)-1 = B-1A-1                       (d) (A+B)-1 = B-1 + A-1

(a) adj A = $\left|A\right|$ A1

As we know,

Thus, adj A = $\left|A\right|$ A1 is correct.

(b) det(A1) = [det(A)]1

As we know,
$\left|{A}^{-1}\right|=\frac{1}{\left|A\right|}\phantom{\rule{0ex}{0ex}}⇒\left|{A}^{-1}\right|={\left|A\right|}^{-1}\phantom{\rule{0ex}{0ex}}$

Thus, det(A1) = [det(A)]1 is correct.

(c) (AB)1 = B1A1

As we know,
By reversal law of inverse
(AB)1 = B1A1

Thus, (AB)1 = B1A1 is correct.

(d) (A + B)1 = B1 + A1

Thus, (A + B)1 = B1 + A1 is incorrect.

Hence, the correct option is (d).

#### Question 33:

If A = $\left[\begin{array}{ccc}2& \lambda & -3\\ 0& 2& 5\\ 1& 1& 3\end{array}\right]$, then A-1 exists if
(a) λ=2           (b) λ≠2            (c) λ≠-2            (d) none of these

Given: A = $\left[\begin{array}{ccc}2& \lambda & -3\\ 0& 2& 5\\ 1& 1& 3\end{array}\right]$

A1 exists only if |A| ≠ 0.
$\left|\begin{array}{ccc}2& \lambda & -3\\ 0& 2& 5\\ 1& 1& 3\end{array}\right|\ne 0\phantom{\rule{0ex}{0ex}}⇒2\left(6-5\right)+1\left(5\lambda +6\right)\ne 0\phantom{\rule{0ex}{0ex}}⇒2\left(1\right)+5\lambda +6\ne 0\phantom{\rule{0ex}{0ex}}⇒2+5\lambda +6\ne 0\phantom{\rule{0ex}{0ex}}⇒5\lambda +8\ne 0\phantom{\rule{0ex}{0ex}}⇒5\lambda \ne -8\phantom{\rule{0ex}{0ex}}⇒\lambda \ne \frac{-8}{5}$

Thus, ​A1 exists if λ ∈ $R-\left\{-\frac{8}{5}\right\}$

Hence, the correct option is (a).

#### Question 34:

If A is a square matrix such that A2 = A, then (I – A)3 + A is equal to
(a) I           (b) O           (c) I  – A           (d) I + A

Given: ${\mathrm{A}}^{2}=\mathrm{A}$
Now,

Thus, the value of ${\left(\mathrm{I}-\mathrm{A}\right)}^{3}+\mathrm{A}$ is I.
Hence, the correct answer is option A.

#### Question 35:

The matrix $\left[\begin{array}{rrr}2& -1& 3\\ \lambda & 0& 7\\ -1& 1& 4\end{array}\right]$ is not invertible for
(a) $\lambda$ = –1        (b) $\lambda$ = 0           (c) $\lambda$ = 1          (d)   – 

Given: $\left[\begin{array}{rrr}2& -1& 3\\ \lambda & 0& 7\\ -1& 1& 4\end{array}\right]$
We know, for a matrix to be non-invertible
$\left|\mathrm{A}\right|=0$
$⇒\left|\begin{array}{ccc}2& -1& 3\\ \lambda & 0& 7\\ -1& 1& 4\end{array}\right|=0\phantom{\rule{0ex}{0ex}}⇒2\left(0-7\right)+1\left(4\lambda +7\right)+3\left(\lambda -0\right)=0\phantom{\rule{0ex}{0ex}}⇒-14+4\lambda +7+3\lambda =0\phantom{\rule{0ex}{0ex}}⇒7\lambda -7=0\phantom{\rule{0ex}{0ex}}⇒\lambda =1$

#### Question 1:

If A is a unit matrix of order n, then A (adj A) = ___________________.

As we know that, A(adj A) = |A|I.

But it is given that A is a unit matrix of order n
Therefore, A(adj A) = |I|I = (1)I = I

Hence, if A is a unit matrix of order n, then A (adj A) = I.

#### Question 2:

If A is a non-singular square matrix such that A3 = I, then A-1 = _______________.

Given: A3 = I

A
3 = I
Multiplying both sides by A1, we get
⇒ A3A1I A1
⇒ A2(AA1) = I A1
⇒ A2(I) = A1
⇒ A2 = A1

Hence, if A is a non-singular square matrix such that A3 = I, then A1 = A2.

#### Question 3:

If A and B are square matrices of the same order and AB = 3I, then A-1 = __________________.

Given:
A and B are square matrices of the same order
AB = 3I

AB = 3I
Pre-Multiplying both sides by A1, we get
⇒ A1(AB) = A1(3I
(A1A)B = 3(A1I
⇒ (I)B = 3A1
⇒ B = 3A1
⇒ $\frac{1}{3}B$ = A1

Hence, if A and B are square matrices of the same order and AB = 3I, then A=  $\overline{)\frac{1}{3}B}$.

#### Question 4:

If the matrix A$\left[\begin{array}{ccc}1& a& 2\\ 1& 2& 5\\ 2& 1& 1\end{array}\right]$ is not invertible, than a = ___________________.

Given: A = $\left[\begin{array}{ccc}1& a& 2\\ 1& 2& 5\\ 2& 1& 1\end{array}\right]$

A is not invertible if |A| = 0.
$\left|\begin{array}{ccc}1& \alpha & 2\\ 1& 2& 5\\ 2& 1& 1\end{array}\right|=0\phantom{\rule{0ex}{0ex}}⇒1\left(2-5\right)-1\left(\alpha -2\right)+2\left(5\alpha -4\right)=0\phantom{\rule{0ex}{0ex}}⇒1\left(-3\right)-1\alpha +2+10\alpha -8=0\phantom{\rule{0ex}{0ex}}⇒-3-\alpha +2+10\alpha -8=0\phantom{\rule{0ex}{0ex}}⇒9\alpha -9=0\phantom{\rule{0ex}{0ex}}⇒9\alpha =9\phantom{\rule{0ex}{0ex}}⇒\alpha =1$

Hence, if the matrix A = $\left[\begin{array}{ccc}1& a& 2\\ 1& 2& 5\\ 2& 1& 1\end{array}\right]$ is not invertible, than a = 1.

#### Question 5:

If A is a singular matrix, then A (adj A) = ____________________.

As we know that, A(adj A) = |A|I.

But it is given that A is a singular matrix
Thus, |A| = 0.
Therefore, A(adj A) = 0I = O, where O is the zero matrix.

Hence, if A is a singular matrix, then A (adj A) = O.

#### Question 6:

Let A be a square matrix of order 3 such that $\left|A\right|$ = 11 and B be the matrix of confactors of elements of A. Then, ${\left|B\right|}^{2}$ = ________________.

Given:
A be a square matrix of order 3
$\left|A\right|$ = 11
B be the matrix of cofactors of elements of A

Since, B be the matrix of cofactors of elements of A

As we know,

Hence, ${\left|B\right|}^{2}$ = 14641.

#### Question 7:

If A is a square matrix of order 2 such that A (adj A) =  =______________.

As we know that, A(adj A) = |A|I.

But it is given that A (adj A) = $\left[\begin{array}{cc}10& 0\\ 0& 10\end{array}\right]$

Hence, |A| = 10.

#### Question 8:

If A is an invertible matrix of order 3 and  = ___________________.

Given:
A is an invertible matrix of order 3
$\left|A\right|$ = 3

As we know,

#### Question 9:

If A is an invertible matrix of order 3 and  = __________________.

Given:
A is an invertible matrix of order 3
$\left|A\right|$ = 5

As we know,

#### Question 10:

If A is an invertible matrix of order 3 and  =__________________.

Given:
A is an invertible matrix of order 3
$\left|A\right|$ = 4

As we know,

#### Question 11:

If A = diag (1, 2, 3), then  =________________.

Given:
A = diag (1, 2, 3)
⇒ $\left|A\right|$ = 1 × 2 × 3 = 6

As we know,

#### Question 12:

If A is a square matrix of order 3 such that  = ________________.

Given:
A is a square matrix of order 3
|A| = $\frac{5}{2}$

As we know,
$\left|{A}^{-1}\right|={\left|A\right|}^{-1}\phantom{\rule{0ex}{0ex}}⇒\left|{A}^{-1}\right|=\frac{1}{\left|A\right|}\phantom{\rule{0ex}{0ex}}⇒\left|{A}^{-1}\right|=\frac{1}{\frac{5}{2}}\phantom{\rule{0ex}{0ex}}⇒\left|{A}^{-1}\right|=\frac{2}{5}\phantom{\rule{0ex}{0ex}}$

Hence, $\left|{A}^{-1}\right|=\overline{)\frac{2}{5}}$.

#### Question 13:

If A is a square matrix such that A (adj A) = 10I, then $\left|A\right|$ = ____________________.

Given:
A is a square matrix

As we know,

Hence, $\left|A\right|=\overline{)10}$.

#### Question 14:

Let A be a square matrix of order 3 and B = _________________.

Given:
A is a square matrix of order 3
= |A|A−1
|A| = −5

Now,

Hence, $\left|B\right|=\overline{)25}$.

#### Question 15:

If k is a scalar and I is a unit matrix of order 3, then adj (kI) = ________________.

Given:
I is a unit matrix of order 3

As we know,

#### Question 16:

If A and A (adj A) = $\left[\begin{array}{cc}k& 0\\ 0& k\end{array}\right]$, then k = _________________.

Given:
A = $\left[\begin{array}{cc}\mathrm{cos}x& \mathrm{sin}x\\ -\mathrm{sin}x& \mathrm{cos}x\end{array}\right]$
A(adj A) = $\left[\begin{array}{cc}k& 0\\ 0& k\end{array}\right]$

Now,
$A=\left[\begin{array}{cc}\mathrm{cos}x& \mathrm{sin}x\\ -\mathrm{sin}x& \mathrm{cos}x\end{array}\right]\phantom{\rule{0ex}{0ex}}⇒\left|A\right|=\left|\begin{array}{cc}\mathrm{cos}x& \mathrm{sin}x\\ -\mathrm{sin}x& \mathrm{cos}x\end{array}\right|\phantom{\rule{0ex}{0ex}}⇒\left|A\right|={\mathrm{cos}}^{2}x+{\mathrm{sin}}^{2}x\phantom{\rule{0ex}{0ex}}⇒\left|A\right|=1$

As we know,

Hence, $k=\overline{)1}$.

#### Question 17:

If A is a non-singular matrix of order 3, then adj (adj A) is equal to ________________.

Given:
A is a non-singular matrix of order 3

As we know,

#### Question 18:

If A = [aij]2×2, where aij = , then A-1 = ____________________.

Given:
A = [aij]2×2, where aij =

Hence, ${A}^{-1}=\overline{)\frac{1}{9}\left[\begin{array}{cc}0& 3\\ 3& 1\end{array}\right]}.$

#### Question 19:

If A$\left[\begin{array}{cc}0& 3\\ 2& 0\end{array}\right]$ and A-1 = λ (adj A), then λ = _____________________.

Given:
A = $\left[\begin{array}{cc}0& 3\\ 2& 0\end{array}\right]$

Hence, $\lambda =\overline{)-\frac{1}{6}}$.

#### Question 20:

If A is a 3×3 non-singular matrix such that AAT = ATA and B = A-1AT, then BBT = ______________.

Given:
A is a 3×3 non-singular matrix
AAT = ATA
B
A−1AT

Hence, BBT = I.

#### Question 21:

If A and B are two square matrices of the same order such that B = -A-1BA, then (A+B)2 = ______________.

Given:
$B=-{A}^{-1}BA\phantom{\rule{0ex}{0ex}}⇒AB=-A{A}^{-1}BA\phantom{\rule{0ex}{0ex}}⇒AB=-IBA\phantom{\rule{0ex}{0ex}}⇒AB=-BA$

Hence, (A + B)2 = A2 + B2.

#### Question 22:

If A is a non-singular matrix of order 3×3, then (A3)-1 = _____________.

ans

#### Question 23:

If A be a square matrix such that , then the order of A is __________________.

Given:
A is a square matrix

As we know,

Hence, the order of is 3.

#### Question 24:

If A = $\left[\begin{array}{ccc}x& 5& 2\\ 2& y& 3\\ 1& 1& z\end{array}\right]$ ,xyz = 80, 3x + 2y + 10z = 20 and A adj A = kI, then k = _________________.

Given:
A = $\left[\begin{array}{ccc}x& 5& 2\\ 2& y& 3\\ 1& 1& z\end{array}\right]$
xyz = 80
3x + 2y + 10z = 20

Now,

As we know,

Hence, k = 79.

#### Question 25:

For A = $\left[\begin{array}{cc}3& –4\\ 1& –1\end{array}\right]$, write A–1.

Given $A=\left[\begin{array}{cc}3& -4\\ 1& -1\end{array}\right]$
$\left|A\right|=\left|\begin{array}{cc}3& -4\\ 1& -1\end{array}\right|=1\ne 0$
This implies that the given matrix is invertible.
Also, $adjA={\left[\begin{array}{cc}-1& -1\\ 4& 3\end{array}\right]}^{\text{'}}=\left[\begin{array}{cc}-1& 4\\ -1& 3\end{array}\right]$
$\therefore {A}^{-1}=\frac{adjA}{\left|A\right|}=\left[\begin{array}{cc}-1& 4\\ -1& 3\end{array}\right]$

#### Question 1:

Write the adjoint of the matrix $A=\left[\begin{array}{cc}-3& 4\\ 7& -2\end{array}\right].$

#### Question 2:

If A is a square matrix such that A (adj A)  5I, where I denotes the identity matrix of the same order. Then, find the value of |A|.

We know

Here,

#### Question 3:

If A is a square matrix of order 3 such that |A| = 5, write the value of |adj A|.

For any square matrix of order n,

#### Question 4:

If A is a square matrix of order 3 such that |adj A| = 64, find |A|.

For any square matrix of order n,

#### Question 5:

If A is a non-singular square matrix such that |A| = 10, find |A−1|.

For any non-singular matrix A,

#### Question 6:

If A, B, C are three non-null square matrices of the same order, write the condition on A such that AB = ACB = C.

Consider $AB=AC$.
On multiplying both sides by ${A}^{-1}$, we get

$A{A}^{-1}B=A{A}^{-1}C$

Therefore, the required condition is A must be invertible or $\left|A\right|\ne 0$.

#### Question 7:

If A is a non-singular square matrix such that ${A}^{-1}=\left[\begin{array}{cc}5& 3\\ -2& -1\end{array}\right]$, then find ${\left({A}^{T}\right)}^{-1}.$

For any invertible matrix A,
$\phantom{\rule{0ex}{0ex}}\left({A}^{T}{\right)}^{-1}=\left({A}^{-1}{\right)}^{T}$

#### Question 8:

Given:

For any two non-singular matrices,

#### Question 9:

If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.

For any symmetric matrix, ${A}^{T}=A$.

Hence, ${A}^{T}$ is also symmetric.

#### Question 10:

If A is a square matrix of order 3 such that |A| = 2, then write the value of adj (adj A).

For any square matrix A, we have

#### Question 11:

If A is a square matrix of order 3 such that |A| = 3, then write the value of adj (adj A).

For any square matrix A, we have

#### Question 12:

If A is a square matrix of order 3 such that adj (2A) = k adj (A), then write the value of k.

#### Question 13:

If A is a square matrix, then write the matrix adj (AT) − (adj A)T.

#### Question 14:

Let A be a 3 × 3 square matrix, such that A (adj A) = 2 I, where I is the identity matrix. Write the value of |adj A|.

#### Question 15:

If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.

#### Question 16:

If , then find the value of k.

#### Question 17:

If A is an invertible matrix such that |A−1| = 2, find the value of |A|.

#### Question 18:

If A is a square matrix such that , then write the value of |adj A|.

#### Question 19:

If $A=\left[\begin{array}{cc}2& 3\\ 5& -2\end{array}\right]$ be such that then find the value of k.

#### Question 20:

Let A be a square matrix such that ${A}^{2}-A+I=O$, then write ${A}^{-1}$ interms of A.

#### Question 21:

If Cij is the cofactor of the element aij of the matrix $A=\left[\begin{array}{ccc}2& -3& 5\\ 6& 0& 4\\ 1& 5& -7\end{array}\right]$, then write the value of a32C32.

In the given matrix $A=\left[\begin{array}{ccc}2& -3& 5\\ 6& 0& 4\\ 1& 5& -7\end{array}\right]$,
C32 = (−1)3 + 2 (8 − 30) = 22

Therefore, a32C32 = 5 × 22 = 110.

Hence, the value of a32C32 is 110.

#### Question 22:

Find the inverse of the matrix $\left[\begin{array}{cc}3& -2\\ -7& 5\end{array}\right].$

#### Question 23:

Find the inverse of the matrix .

#### Question 24:

If $A=\left[\begin{array}{cc}1& -3\\ 2& 0\end{array}\right]$, write adj A.

#### Question 26:

If $A=\left[\begin{array}{cc}3& 1\\ 2& -3\end{array}\right]$, then find |adj A|.

#### Question 27:

If $A=\left[\begin{array}{cc}2& 3\\ 5& -2\end{array}\right]$, write ${A}^{-1}$ in terms of A.

$⇒{A}^{-1}=\frac{1}{19}A$

Write

#### Question 29:

Use elementary column operation C2 → C2 + 2C1 in the following matrix equation :

Applying C2 → C2 + 2C1, we get

#### Question 30:

In the following matrix equation use elementary operation R2 → R2 + R1 and the equation thus obtained:

By applying elementary operation R2 → R2 + R1, we get

(Every row operation is equivalent to left-multiplication by an elementary matrix.)

#### Question 31:

If A is a square matrix with $\left|A\right|$ = 4 then find the value of

Given:
A is a square matrix
$\left|A\right|$ = 4

Now,

Hence,

View NCERT Solutions for all chapters of Class 12