Please help me to solve this question as I am not able to understand this

Solution :


We have:fx=x2x2ax+bx>2As fx is differentiable at x=2, hence it must be continuous at x=2.limx2- fx=limx2+ fxlimx2- x2=limx2+ ax+b22=2a+b2a+b=4 ;iDifferentiating fx with respect to x ,we get:f'x=2xx2ax>2Again as fx is differentiable at x=2, hence f'x must be continuous at x=2.limx2- f'x=limx2+ f'xlimx2- 2x=limx2+ a2×2=aa=4Put this in i2×4+b=4b=-4Hence a=4 and b=-4
‚Äč
 

  • 0
What are you looking for?