If y=(x + rt (x^2 +1))^m, prove that (x^2 +1) y2 + xy1 - m^2 y =0

Here ,  y = ( x + √(x2 + 1) )m
So y1 = m (x + √(x2 + 1) )m-1 d/dx( x + √(x2 + 1) )
                = m ( x + √(x2 + 1) ) m-1 ( 1 + 2x/2√(x2 + 1))
                =m( x+ √(x2 + 1))m-1( x + √(x2 + 1)) / √(x2 + 1)
                =m( x + √(x2 + 1) )m/√(x2 + 1)
Cross multiplying ,
√(x2 + 1)y1  = m ( x + √(x2 + 1) )m
Similarly , differentiating both sides w.r.t x ,
√(x2 + 1)y2 + y1 (d/dx(√(x2 + 1))                   = m2 (x + √(x2 + 1) )m-1 d/dx( x + √(x2 + 1) )
√(x2 + 1)y2 +  y1 . x/√(x2 + 1)        = m2 ( x + √(x2 + 1) ) m-1 ( 1 + 2x/2√(x2 + 1))
                                                                =m2( x+ √(x2 + 1))m-1( x + √(x2 + 1)) / √(x2 + 1)
                                                                =m2( x + √(x2 + 1) )m/√(x2 + 1)
Cross multiplying ,
We get , ( x2 + 1)y2  + xy1  = m2( x + √(x2 + 1) )m
                                                = m2y       [ y = ( x + √(x2 + 1) )m ]
Re arranging , ( x2+ 1)y2 + xy1 – m2y = 0
Hope that helps.

  • 56
What are you looking for?