area bounded by y=[sin x+cos x] and the lines x=0,x=pi is (where [.] denotes the greatest integer function)

Dear Student,
Please find below the solution to the asked query:

We havey=sinx+cosxRequired area will be given by:A=0πy.dx=0πsinx+cosx.dx=0π2sinx.12+cosx.12.dx=0π2sinx.cosπ4+cosx.sinπ4.dx=0π2sinx+π4.dx  sinA.cosB+cosA.sinB=sinA+BAs 0<x<π0+π4<x+π4<π+π4π4<x+π4<5π4When0<xπ2π4<x+π43π4Hence 2sinx+π4[1,2)2sinx+π4=1When π2<x3π43π4<x+π4π Hence 2sinx+π4[0,1)2sinx+π4=0When3π4<x<ππ<x+π4<5π4Hence 2sinx+π4-1,02sinx+π4=-1Now0π2sinx+π4.dx=0π22sinx+π4.dx+π23π42sinx+π4.dx+3π4π2sinx+π4.dx=0π21.dx+π23π40.dx+3π4π-1.dx=0π21.dx-3π4π1.dx=x0π2-x3π4π=π2-0-π-3π4=π2-π4=π40πsinx+cosx.dx=π4

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards

  • -9
What are you looking for?